Electric Kiln Calculator

Kiln Builder

by Dennis Allende

D
W
H

Insulation Configuration

Fire Brick Layer

Brick Thickness: 2.5 in
Thermal Conductivity: 0.15 W/mK
R-Value (Brick): 0 m²K/W

Ceramic Fiber Insulation

in
Total Fiber Thickness: 2 in
Thermal Conductivity: 0.14 W/mK
R-Value (Fiber): 0 m²K/W

Combined Insulation

Total Wall Thickness: 0 in
Total R-Value: 0 m²K/W
Ambient Temperature: 25°C (77°F)

Heat Transfer Analysis

Conduction Through Walls

Interior Surface Area: 0
Temperature Gradient: 1222°C → 0°C
Heat Flux (q): 0 W/m²
Conduction Loss: 0 W

External Surface Losses

Exterior Surface Area: 0
Surface Temperature: 0°C
Convection (Natural): 0 W
Radiation (ε=0.9): 0 W
Surface Losses: 0 W

Heat Balance Verification

Heat through walls: 0 W
Heat from surface: 0 W
Balance Error: 0%
Total Heat Loss: 0 W (0 BTU/hr)
Without Fiber Insulation: 0 W (-0%)

Power Requirements & Recommendations

Minimum Power (Heat Loss Only)

Steady State Loss: 0 W
Maintenance Margin: ×1.25 (25%)
Minimum Power: 0 W
⚠️ Note: This is the MINIMUM to maintain temperature. Does NOT include heating brick mass or pottery. For practical use, choose 3-5× this value.

Industry Standard Methods

Market Volume (72 W/L): 0 W
Market Surface (0.65 W/cm²): 0 W
Olsen Volume (1.2-1.5 W/in³): 0 W
Olsen Surface (5-7 W/in²): 0 W
Olsen Table Match: -
Note: Industry methods include heating mass, work, and practical margins. They assume minimal insulation.

Practical Power Recommendation

For 6-8 hour heat-up: 0 - 0 W
Accounts for: ✓ Heating brick mass
✓ Heating pottery load
✓ Reasonable heat-up time
Recommended: 0 W

References

Bibliography:

Olsen, Frederick L. (2014). The Kiln Book (4th ed.). Iola, WI: Krause Publications.

Schonert, M. (2016). "Heat Transfer Calculations." RepKiln Project. https://hackaday.io/project/21642-repkiln/log/59173-heat-transfer-calculations

The Edward Orton Jr. Ceramic Foundation. "Pyrometric Cone Temperature Chart" (self-supporting cones at 60°C/hr heating rate). Official Chart PDF

Detailed Calculation Formulas:

A. Complete Heat Transfer Analysis:

• Steady-state: Heat through walls = Heat from surface

• Conduction: Q = (T_interior - T_surface) × A_interior / R_total

• Convection: Q_conv = h × A_exterior × (T_surface - T_ambient)

   Natural convection coefficient (h): 4-10 W/m²K

• Radiation: Q_rad = ε × σ × A × (T_s⁴ - T_a⁴)

   Emissivity (ε): 0.9, Stefan-Boltzmann (σ): 5.67×10⁻⁸ W/m²K⁴

• Surface temperature found iteratively where conduction = convection + radiation

B. R-Value (Thermal Resistance) Calculation:

• R = thickness(m) / thermal_conductivity(W/mK)

• R_brick = brick_thickness_m / k_brick

• R_ceramic_fiber = fiber_thickness_m / k_ceramic_fiber

• R_total = R_brick + R_ceramic_fiber (series addition)

C. Thermal Conductivity Values:

• K-23 firebrick: k = 0.12 W/mK

• K-26 firebrick: k = 0.15 W/mK

• Ceramic fiber (64 kg/m³): k = 0.16 W/mK

• Ceramic fiber (96 kg/m³): k = 0.14 W/mK

• Ceramic fiber (128 kg/m³): k = 0.12 W/mK (optimal)

• Ceramic fiber (160 kg/m³): k = 0.11 W/mK

• Ceramic fiber (192 kg/m³): k = 0.10 W/mK

• Note: Higher density = lower k-value = better insulation

• Values at mean temperature (~500-600°C)

D. Heat Transfer Analysis (Steady-State):

• Conduction through walls: Q = (T_interior - T_surface) × A_interior / R_total

• Convection from surface: Q_conv = h × A_exterior × (T_surface - T_ambient)

• Radiation from surface: Q_rad = ε × σ × A_exterior × (T_surface⁴ - T_ambient⁴)

• Convection coefficient (h): 4-10 W/m²K (temperature-dependent)

• Emissivity (ε): 0.9 for typical painted/oxidized metal surfaces

• Stefan-Boltzmann constant (σ): 5.67×10⁻⁸ W/m²K⁴

• In steady state: Q_conduction = Q_convection + Q_radiation

• Surface temperature found iteratively using Newton-Raphson method (100 max iterations)

• Convergence criteria: |error| < 0.5W or |error/Q| < 0.1%

E. Real-World Kiln Power Analysis:

• Skutt KM-1027 (7 ft³ / 198 L, 23×23×27"): 11,520W = 58 W/L

• Industry formulas (72 W/L, 4.2 W/in²) assume minimal insulation (2.5" brick only)

• Modern well-insulated kilns use 30-50% less power than industry formulas

• Total power requirement = Heat loss + Heating thermal mass + Heating pottery

• Thermal mass energy: E = mass × c × ΔT

   Example: 245 kg brick × 0.84 kJ/kg·K × 1197 K = 247 MJ = 68 kWh

   Over 6-8 hour firing: 10-14 kW average power during heat-up

• Steady-state heat loss (this calculator) is only maintenance requirement at temperature

F. Power Calculation Methods Summary:

• Market Volume Median: P = V_interior_L × 72 W/L (V_interior_in³ × 1.18 W/in³)

• Market Surface Median: P = A_interior_cm² × 0.65 W/cm² (A_interior_in² × 4.2 W/in²)

• Olsen Method 1: P = V_interior_in³ × 1.35 W/in³ (average of 1.2-1.5)

• Olsen Method 2: P = A_interior_in² × 6 W/in² (average of 5-7)

• Note: These formulas overestimate for well-insulated kilns

G. Heat Loss Reduction Calculation:

• Heat_Loss_Without_Insulation = (ΔT × A) / R_brick_only

• Reduction_% = ((Loss_without - Loss_with) / Loss_without) × 100

H. Unit Conversions:

• Inches to meters: multiply by 0.0254

• Square inches to square cm: multiply by 6.4516

• °F to °C: (°F - 32) × 5/9

• Interior volume (in³): W_in × D_in × H_in

• Interior surface area (in²): 2×(W×D + W×H + D×H)

Olsen Electrical Specifications Table (Table 9-1):

* Range shows closest volume match from Olsen's table. User should make final power selection.

Volume (ft³) Kilowatts Volts Amps Elements
11.812015-
24.623020-
5.5220/240253
4.6230/20820 (3φ)3
35.3230233
5.1230224
5.8240244
48.1230354
11.0208/24026.6 (3φ)-
10.824045-
514.4220/24060-
8.923038.5-
7.823034-
69.2230405
716.8220/24070-
11.323047-
814.4220/24060-
10.4230455
9.2230405
1013.8230606
26.0240108-
1330.0220/240125-
24.0220/240100-
25.0220/24075-
1534.52301506
1636.0220/240150-
30.0220/240125-
24.02401005

Comprehensive Market Data (66 Electric Kilns):

Median: 0.65 W/cm² (4.2 W/in²) surface density, 72 W/L (2040 W/ft³) volume density
Average: 0.67 W/cm² (4.3 W/in²) surface density, 92.8 W/L (2628 W/ft³) volume density

Brand/Model Volume L (ft³) Watts W/cm² (W/in²) W/L (W/ft³) Wall
Skutt FireBox 8×45 (0.2)18001.03 (6.6)383 (10.8)2.0
Skutt FireBox 8×66 (0.2)18000.88 (5.7)287 (8.1)2.0
L&L Plug-n-Fire9 (0.3)15000.56 (3.6)159 (4.5)2.0
Olympic HB89E9 (0.3)18000.67 (4.3)191 (5.4)2.0
L&L DLH11-DX14 (0.5)28000.87 (5.6)200 (5.7)2.5
Nabertherm Top 16/R15 (0.5)26000.76 (4.9)171 (4.8)2.5
Cress ET91118 (0.6)15000.37 (2.4)84 (2.4)2.5
Skutt KM-614-321 (0.7)23000.54 (3.5)110 (3.1)2.5
Paragon GL6432 (1.1)36000.64 (4.1)113 (3.2)2.0
Evenheat Studio Pro33 (1.2)28800.49 (3.2)87 (2.5)2.0
Jen-Ken AF 151342 (1.5)62400.91 (5.9)150 (4.2)2.5
Rohde Ecotop 4343 (1.5)29000.42 (2.7)67 (1.9)1.4*
L&L e14S-349 (1.7)49800.67 (4.3)102 (2.9)3.0
Evenheat HF 181353 (1.9)55000.70 (4.5)103 (2.9)2.5
Cone Art 1813D54 (1.9)55000.73 (4.7)101 (2.9)3.5
Rohde Ecotop 6060 (2.1)36000.43 (2.7)60 (1.7)1.4*
L&L e18S-363 (2.2)57400.65 (4.2)91 (2.6)3.0
Jen-Ken AF 181566 (2.3)72000.76 (4.9)108 (3.1)2.5
Kittec CB 70 S70 (2.5)48000.55 (3.5)69 (1.9)2.8
Olympic 1818E71 (2.5)50400.53 (3.4)71 (2.0)2.5
Skutt KM-81871 (2.5)66600.70 (4.5)93 (2.6)2.5
Cress E1874 (2.6)53000.61 (3.9)72 (2.0)2.5
Paragon TNF82378 (2.8)72000.71 (4.6)92 (2.6)3.0
AMACO EX-232SF87 (3.1)65000.60 (3.9)75 (2.1)2.5
Cress E2393 (3.3)86000.84 (5.4)92 (2.6)2.5
Kittec CB 100 S95 (3.4)72000.67 (4.3)75 (2.1)2.8
L&L e18T-395 (3.4)75000.64 (4.1)79 (2.2)3.0
Nabertherm N 100112 (4.0)90000.65 (4.2)80 (2.3)3.0
Skutt KM-1018-3114 (4.0)84000.64 (4.1)74 (2.1)3.0
L&L e23S-3115 (4.1)86400.66 (4.3)75 (2.1)3.0
Cone Art 2318D123 (4.3)90000.67 (4.3)73 (2.1)3.5
MEDIAN (33rd kiln)--0.65 (4.2)72 (2.0)-
Jen-Ken AF3C 1822143 (5.0)86400.60 (3.9)61 (1.7)2.5
Olympic 2518HE145 (5.1)81600.57 (3.7)56 (1.6)3.0
L&L e23T-3173 (6.1)115200.67 (4.3)67 (1.9)3.0
Skutt KM-1027-3174 (6.1)115200.67 (4.3)66 (1.9)2.5
AMACO EX-257SF177 (6.3)108000.64 (4.1)61 (1.7)2.5
Cress E24HP179 (6.3)140000.84 (5.4)78 (2.2)3.0
L&L e28S-3182 (6.4)108000.60 (3.9)59 (1.7)3.0
Evenheat HF 2327192 (6.8)98000.53 (3.4)51 (1.4)2.5
Nabertherm N 200197 (7.0)150000.75 (4.8)76 (2.1)3.0
Evenheat RM 2329206 (7.3)108000.56 (3.6)52 (1.5)2.5
AMACO HF-101217 (7.7)134000.69 (4.5)62 (1.8)5.0
Jen-Ken AF 2822222 (7.8)115200.58 (3.7)52 (1.5)3.0
L&L eQ2327-3 eQuad234 (8.3)195100.90 (5.8)83 (2.4)3.0
Paragon Dragon 24255 (9.0)165000.69 (4.5)65 (1.8)4.0
Skutt KM-1227-3267 (9.4)115200.49 (3.2)43 (1.2)3.0
Bailey TL-2327-10272 (9.6)135000.58 (3.7)50 (1.4)4.5
Bailey TL-2827272 (9.6)135000.58 (3.7)50 (1.4)4.5
L&L e28T-3272 (9.6)166200.71 (4.6)61 (1.7)3.0
Olympic 2827HE278 (9.8)120000.51 (3.3)43 (1.2)3.0
AMACO HF-105282 (10.0)180000.77 (5.0)64 (1.8)5.0
Olympic Oval 2030E295 (10.4)156800.64 (4.1)53 (1.5)3.0
Olympic 3027HE313 (11.1)144000.57 (3.7)46 (1.3)3.0
Bailey TL-4222333 (11.8)155000.61 (3.9)47 (1.3)4.5
Paragon Super Dragon340 (12.0)220000.75 (4.8)65 (1.8)4.0
Jen-Ken JK² 29"347 (12.2)132000.45 (2.9)38 (1.1)3.0
Skutt KM-1227-3PK366 (12.9)236000.83 (5.3)64 (1.8)3.0
L&L T2327-D DaVinci413 (14.6)260130.78 (5.0)63 (1.8)3.5
Cress FXC30FH442 (15.6)180000.61 (3.9)41 (1.2)6.5
L&L T2336-D DaVinci551 (19.5)325150.80 (5.2)59 (1.7)3.5
Bailey Commercial603 (21.3)220000.62 (4.0)36 (1.0)7.0

*Microporous insulation. Sample of 66 electric kilns analyzed.